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Modern agricultural practices have triggered the process of agricultural pollution. This process can cause

the degradation of eco-systems, land, and environment owing to the modern-day by-products of

agriculture. The substantial use of chemical fertilizers, pesticides, and, contaminated water for irrigation

cause further damage to agriculture. The current scenario of the agriculture and food sector has

therefore become unsustainable. Nanotechnology has provided innovative and resourceful frontiers to

the agriculture sector by contributing practical applications in conventional agricultural ways and

practices. There is a large possibility that agri-nanotechnology can have a significant impact on the

sustainable agriculture and crop growth. Recent research has shown the potential of nanotechnology in

improving the agriculture sector by enhancing the efficiency of agricultural inputs and providing

solutions to agricultural problems for improving food productivity and security. The prospective use of

nanoscale agrochemicals such as nanofertilizers, nanopesticides, nanosensors, and nanoformulations in

agriculture has transformed traditional agro-practices, making them more sustainable and efficient.

However, the application of these nano-products in real field situations raises concern about

nanomaterial safety, exposure levels, and toxicological repercussions to the environment and human

health. The present review gives an insight into recent advancements in nanotechnology-based

agrochemicals that have revolutionized the agriculture sector. Further, the implementation barriers

related to the nanomaterial use in agriculture, their commercialization potential, and the need for policy

regulations to assess possible nano-agricultural risks are also discussed.
Environmental signicance

Modern agricultural practices have started the process of agricultural pollution. This process causes the degradation of eco-systems, land, and environment due
to the modern-day by-products of agriculture. To begin with, the earliest source of pollution has been pesticides and fertilizers. Contaminated water used for
irrigation is another source of pollution. Further problems are caused by soil erosion and sedimentation. Nanotechnology is presumed to be a vital force in the
near future that can contribute to practical applications in conventional agricultural ways and practices. The prospective use of nanoscale agrochemicals such as
nanofertilizers, nanopesticides, nanosensors, and nanoformulations in agriculture has transformed traditional agro-practices, making them more sustainable,
ingenious, and environmentally efficient. The present review gives an insight into recent advancements in nanotechnology-based agrochemicals that have
revolutionized the agriculture sector. The potential applications of nanofertilizers, nanopesticides, nanosensors, and nanoformulations in increasing crop
yields, detecting environmental contaminants, and nano-facilitated soil remediation are evaluated with their positive inuence on plant growth.
1. Introduction

Agriculture has always been the prime driver in the economy of
self-sustaining and developing nations. It provides raw material
for food and feed industries, which are responsible for the
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survival of a rapidly-growing global population of nearly 7.5
billion.1,2 Agriculture can bring a paradigm shi in a country's
economy by contributing towards globalization, technology,
economic growth, environmental remediation, biodiversity
conservation, food security, and safety.3–5 Currently, the agricul-
tural sector is facing a broad panorama of challenges such as the
decline in crop yield, deciency of soil nutrients, climate change,
water unavailability, decrease in soil fertility, deterioration of biotic
matter in the soil, crop diseases, lack of awareness towards
genetically modied organisms, and insufficient workforce.6,7

These challenges, further linked to industrialization and growing
human population, necessitate safer agricultural practices in the
Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 213
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present time. Sustainability in agriculture has always been
a fundamental concern owing to its long-term implications on
food production and national economics. United Nations has
dened the importance of sustainable agriculture to achieve ‘Zero
Hunger’ as one of the 17 sustainable development goals.8 The
United States Department of Agriculture (USDA) has dened
sustainable agriculture for environmental protection, enhancing
the soil fertility, and fullment of the needs of the present gener-
ation without compromising the needs of future generations.9,10

Sustainable agricultural practices include the better use of water
resources, efficient management of soil nutrients, controlled use
of fertilizers and chemicals, management of agro-wastes, pest
control strategies, crop disease control, and innovative farming
techniques.11,12 The assessment of agricultural sustainability is
based on national or global concerns such as availability of
nancial resources for farmers, technological innovations, as well
as participation in research & development while employing new
technologies.13,14

The application of nanotechnology and nanoscience can
signicantly enhance the efficiency of agricultural inputs and
can offer a signicant solution for maintaining the sustainable
development of agro-systems and related sectors. Nanotech-
nology can bring a revolution in the agriculture sector by
completely changing the food production and supply systems
through improvement in the crop yields while simultaneously
preserving the ecological balance, environmental sustainability,
and economic stability.6,7 Nanomaterials (NMs) are considered
to be ideal platforms to lead the agri-nanotechnology revolu-
tion. The extremely small size of these materials (less than 100
nm) permits them to cross biological barriers and diffuse into
the plant tissue by root or foliar treatment, therefore enabling
new efficient routes of delivery of nutrients and pesticides.
Moreover, the surface engineering of NMs can be performed to
provide desirable properties and functionalities. This will
mainly direct them to the appropriate locations within the plant
or soil and offer smart release and delivery strategies. Nano-
technology has contributed nano-based formulations such as
nanofertilizers, nanopesticides, and nanoemulsions to enhance
crop productivity and growth.15,16 The most productive appli-
cations of nanotechnology in agricultural systems include the
growth in productivity by efficient nutrient uptake and delivery,
water and soil remediation, genetic engineering of protein-
encoding genes, improvement in soil characteristics, and
prevention against diseases.17,18 Nanofertilizers enhance the
fertility of soil through the efficient supply of nutrients, whereas
nanoherbicides and nanopesticides can be effectively used for
the management of herbs, weeds, and pests.18–20 Nanosensors
can be used for the detection of moisture level, nutrient
concentration, soil water levels, determination of diseases, etc.21

Currently, there is a focus on nanoparticle (NP)-mediated gene
delivery in plants for the development of insect-resistant,
disease-resistant, and stress-tolerant crops for increased
life.22,23 Several NMs such as metal oxide NPs, polymeric NPs,
carbon nanotubes, and nanoemulsions with active ingredients
have shown positive results in sustainable agriculture and food
production.24–27 The potential risks that may arise due to NMs in
agro-food products can cause damage to human health and
214 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239
environment. This needs to be taken into account during the
safety evaluation of such nano-enhanced products. However,
inadequate information about the adverse effects of NMs on
human health and environment, toxicological aspects, accu-
mulation of materials in food chains, NM hazard, and exposure
can put agriculture at undesirable risk for human health.28,29 A
general regulatory consensus on the applications of nanoscale
materials in the agricultural sector must be made to control and
regulate the risks related to the health of agricultural workers
and farmers so as to promote safe practices in this sector.30

Several recently reported articles have documented the
applications of nanotechnology in agricultural production and
the food sector.6,31–35 For instance, a review compiled the reports
on nano-encapsulates based on silver, titanium dioxide, and
silica as the most common inorganic NMs employed in agri-
culture, food, and feed additives.36 The applications of nano-
encapsulates and nano-composites are being investigated in
novel foods, food and feed additives, biocides, pesticides, and
food contact materials. In the recent years, there has been more
focus on the use of organic and polymeric NMs such as chitosan
NPs, organic micelles, dendrimers, and liposomes in the agro-
food sector. Also, the research on carbonaceous materials
such as graphene, CNTs, and carbon dots in the agro-food
industry has been tremendously increasing.24 The present
review is particularly aimed at providing readers up-to-date
information on the latest applications of organic and inor-
ganic NMs for crop improvement and sustainable agriculture.
The potential applications of nanofertilizers, nanopesticides,
nanosensors, and nanoformulations in increasing the crop
yields, detecting the environmental contaminants, and nano-
facilitated soil remediation are evaluated with their positive
inuence on plant growth. It covers several aspects of the
application of nanotechnology in agriculture by citing
numerous reports from recent scientic literature. The subse-
quent section has highlighted the challenges of incorporating
nanotechnology in the agricultural sector and focuses on the
existing regulatory legislation to control NM safety in agricul-
ture. It can be concluded that the NM-enabled technology and
products offer an abundance of opportunities as one of the
most productive and environmentally friendly alternatives in
developing sustainable agriculture.
2. Nanotechnology towards
sustainable agriculture

Nanotechnology is knocking on the doors of the agriculture
sector through precision farming as it can be employed
perceptively to suit the general organization of sustainable
agriculture, especially by contributing environment-friendly
and resourceful technologies.37–39 The recent emergence of
nanotechnology in drugs and pharmaceuticals has opened up
new opportunities to apply the fundamentals of nanotech-
nology to the agriculture sector as well.40,41 The integration of
nanotechnology and various scientic elds have paved the way
for the development of novel products, technologies, and more
applications in the agricultural sector (Fig. 1). Nanotechnology
This journal is © The Royal Society of Chemistry 2021
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Fig. 1 The potential applications of nanotechnology and various interdisciplinary fields for promoting sustainable agriculture.
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has tremendous potential to improve the current agricultural
system by the conservation of crop inputs, livestock, animal
husbandry, aquaculture, and sheries. The ultimate goal of
agri-nanotechnology aims to maximize crop productivity
(yields) using nanoscale products while minimizing the agri-
cultural inputs (e.g., agrochemicals, fertilizers, and herbicides)
through continuous monitoring systems.42–44 At every stage of
agriculture (from seed storage to priming, germination, ferti-
gation, and post-harvest), nanotechnology offers the potential
to improve the crop productivity and quality. Nanotechnology
plays an important role in increasing the productivity by
nutrient control and water quality management for sustainable
development in agriculture.45 NMs may positively inuence the
crop yield and soil quality when they enter into the plant
surroundings. The release of NM-encapsulated nutrients in the
soil biota and organic matter improves the plant morphology
and physiology.46–48 The remediation of soil and water with NMs
will greatly help in maintaining the sustainability by elimi-
nating toxic compounds from the soil, subsequently enhancing
its natural quality.49 NM-based optical and electrochemical
sensors have been used for detecting heavy metals and envi-
ronmental pollutants in soil media.21 The applications of
various nano-agrochemicals are represented in Fig. 2.
3. Role of nano-agrochemicals in
agriculture

In this section, various nano-agrochemicals, namely, nano-
fertilizers, nanopesticides, nanosensing materials, and nano-
This journal is © The Royal Society of Chemistry 2021
enhanced products, are discussed, which have been applied
in the agricultural sector along with their prospective applica-
tions for promoting environmental sustainability (Fig. 3).
3.1 Nanofertilizers: nutrient delivery and uptake

The development of fertilizers is considered to be the most
conventional approach to boost plant growth by increasing the
nutrient availability and efficient delivery of minerals. Chemical
fertilizers provide the plants with essential nutrients for the
optimum growth in crop yield and contribute to food security.
However, the excessive use of chemical fertilizers has become
prevalent in recent times due to decreased soil nutrients, global
water scarcity, and reduction in fertile lands.50,51 According to
the Food and Agriculture Organization (FAO), the total usage of
mineral fertilizers in agriculture reached about 110 megatonnes
nitrogen (N), 48.5 megatonnes phosphate (P2O5), and 38.7
megatonnes potash (K2O) in the year 2016, which records an
increase by 34%,40%, and 45%, respectively, in the use of these
nutrients as compared to the year 2002.52 Such extensive use of
fertilizers poses a huge risk to environmental sustainability and
is known to cause the deterioration of soil quality, ground-water
pollution, environmental contamination with heavy metals,
greenhouse gas emissions, and risk to human health.50,53,54 It
becomes essential to develop alternative technologies for
fertilizer synthesis to increase agricultural production. The use
of nanofertilizers has contributed considerably to sustainable
agriculture by increasing the production without causing any
damage to the environment.55 Nanofertilizers are called ‘smart’
carriers for the macro/micronutrients that promote the
Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 215
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Fig. 2 Role of various nanomaterials as agrochemicals in enhancing crop productivity and providing sustainable agricultural practices.

Fig. 3 The applications of nano-agrochemicals for sustainable agriculture.
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accessibility and reach of the active components to the plant
parts, which subsequently leads to increased crop yields and
better vegetation. For example, the macronutrients (such as
nitrogen, potash, phosphorus, calcium, and magnesium) and
micronutrients (such as zinc, copper, iron, and manganese) can
be encapsulated within the NPs coated by nano-lms or agents
and can be directly delivered in the form of nano-emulsions.56–58
216 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239
Nanofertilizers promote agriculture sustainability by reducing
the production costs of conventional fertilizers. In addition to
delivering multiple nutrients at the same time, thereby pre-
venting nutrient loss, the nanolayers on the particles can help in
holding the nutrients strongly due to greater surface
tension.29,59 The protected nutrients are delivered to the tar-
geted regions of the plant, hence preventing nutrient
This journal is © The Royal Society of Chemistry 2021
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Fig. 4 The applications of zinc oxide nanoparticles (ZnONPs) as a novel nanofertilizer to improve the crop yield and food quality of soybean.85
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losses.58,60,61 The most common engineered materials used in
nano-enabled fertilizers for the targeted release and delivery of
nutrients are hydroxyapatite, mesoporous silica, chitosan,
calcite, carbon nanotubes, metal oxide NPs (zinc oxide NPs,
copper oxide NPs, titanium dioxide NPs), magnetite, zeolites,
and nanoclays for foliar and soil application.62,63 These mate-
rials have shown great potential in the slow release of nutrients
and can replace conventional chemical fertilizers. For instance,
the primary macronutrients (nitrogen, phosphorus, and potas-
sium, collectively called NPK) along with calcium and magne-
sium, which are required in essential amounts by the plants, are
provided with urea hydroxylapatite NPs.64,65 Several reports have
published the slow and sustained delivery of nitrogen in the
urea–hydroxyapatite NPs to increase the plant nitrogen agro-
nomic efficiency (NAE) of the plants several times.66–68 Nitrogen
can be delivered to the plants by encapsulating urea–hydroxy-
apatite NPs in the cellulose matrix as a green nano fertilizer
strategy.69 Besides, the application of phosphatic fertilizers in
the form of hydroxyapatite NPs and phosphorus-loaded nano-
zeolites improved the phosphorus availability in soybean and
kankong plants, respectively.70,71 Chitosan-based materials have
emerged as one of the best nanometric agrochemicals in agri-
culture for the efficient delivery of nutrients.72,73 Along with
NPK, calcium is an essential plant nutrient required by plants.
In a study, the application of nano calcium carbonate (CaCO3)
to Vigna mungo seeds was shown to accelerate the seed germi-
nation process with an increase in the root and shoot height,
water content, as well as dry and fresh weight of plants.74 Recent
studies have also reported calcium phosphate NPs doped with
urea and NPK nutrients for nutrient delivery.75,76 Some other
groups have also reported calcium supply through NMs to
different varieties of plants.77–80 The foliar treatment of the nano
forms of magnesium has also been demonstrated to enhance
the plant yield in different plants.81,82

Micronutrient nanofertilizers containing zinc, iron, manga-
nese, copper, andmolybdenum are generally packed in the NMs
such as zinc oxide NPs (ZnO NPs), copper oxide NPs (CuNPs),
magnetite NPs, and manganese NPs.83,84 For instance,
This journal is © The Royal Society of Chemistry 2021
nanoparticulate ZnO has an increasingly positive inuence on
plant growth as compared to bulk Zn chemicals presented in
Fig. 4.85 For instance, ZnO NPs have been shown to increase
plant yields, germination rates, and root and shoot length, and
biofortication in various plants such as maize, mung bean,
chickpea, and peanuts.86,87 ZnO NPs have myriad physiological
advantages to plants such as chlorophyll biosynthesis, total
protein activity, increase in seed vigor, increase in photosyn-
thesis rates, and biomass production.88–90 In addition to ZnO
NPs, iron oxide NPs are alternatives for conventional iron-based
fertilizers as the source of providing iron to plants.91–93 The
plants utilized iron NPs as the source of iron and as a result,
their enzymatic and biochemical efficiency in photosynthetic
processes improved considerably.94 For instance, a study re-
ported that corn seeds (Zea mays) exposed to 20 ppm Fe2O3 NPs
promoted root elongation by 11.5% and an increase in seed
germination indices such as germination rate, germination
energy, and vigor index.95 Numerous other studies have re-
ported the positive effects of iron NPs on plant growth and
yield.96,97 The applications of nano copper and nano manganese
in agricultural systems have also shown good potential in
enhancing the crop yield compared to their bulk counterparts
CuSO4 and MnSO4.88,98,99 For example, Cu nanowires were re-
ported to improve the plant morphology and agronomical
parameters in alfalfa plants.100 In another study, the application
of manganese zinc ferrite NPs was shown to increase the vege-
table yield, mineral content, and plant yield in aquash (Cucur-
bita pepo L.) plants.81

In addition to macro- and micro-nutrients, nano-enhanced
fertilizers contain NMs such as zeolites, titanium oxide (TiO2)
NPs, silicon NPs, graphene oxide (GO), and multi-walled carbon
nanotubes (MWCNTs) augmented with one or multiple plant
nutrients (macro/micro). These fertilizers help the plants in
nutrient uptake without themselves providing any nutrient
element.101–103 Zeolites are nano-porous materials that possess
high surface area and high cation exchange capacity, and are
highly selective towards plant macronutrients (usually K or
NH4). In a greenhouse experiment, a zeolite augmented with
Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 217
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Table 1 A summary of some of the important studies of different nanomaterials used as agrochemicals and their applications in promoting
sustainability in agriculture

(A) Nanofertilizers

S.
no. Nanomaterial as fertilizer Nutrient Test plant/soil Agronomic ndings/application Reference

1 Hydroxyapatite NPs–urea Macronutrient (N) Oryza sativa - Slow-release of nitrogen (35% less) 66
- Increased plant NAE
- Increased N and K content in leaves

2 Urea–hydroxyapatite–
montmorillonite
nanocomposites

Macronutrient (N) Oryza sativa - Slow and sustained release of urea into the
soil

67

- Higher crop yield
3 Hydroxyapatite NPs–urea Macronutrient (N,

P)
Red-yellow oxisol soil - Higher sustained P availability 68

- Decreased phosphorus immobilization
4 Nano zeolites Macronutrient (P

and K)
Ipomoea aquatica - Increased release time 71

- High accumulation of P and K
- Better pH and moisture
- More nutrient availability

5 Nano-chitosan Macronutrient
(NPK)

Triticum aestivum - Increase in harvest and crop index 321
- Increase in root and shoot length

6 Chitosan nanoparticles Macronutrient
(NPK)

Coffea seedlings - Enhanced leaf number, plant height, and
leaf area of the coffee seedlings

322

- Increased nutrient uptake, better
photosynthesis

7 Calcium phosphate
nanoparticles (CaP)

Macronutrient
(NPK)

Triticum durum - Enhanced the efficiency of fertilization 75 and 76
- Precision agriculture
- Increased efficiency of N uptake

8 Calcium nanoparticles (CaNPs) Macronutrient
(Ca)

Moringa oleifera - Enhanced nutritional quality of fruits 77
- Essential nutrients in plants fruits

9 Calcium borate nanoparticles Macronutrient
(Ca) and boron

Lettuce (Lactuca sativa) and
zucchini (Cucurbita pepo)

- Physiological and biochemical features 79
- Boosted plant productivity
- B availability

10 Nano-Mg Macronutrient
(Mg)

Vigna unguicalata - Increased plant yield 91
- Increased stem Mg content

11 Chitosan nanofertilizer Micronutrient
(Cu)

Zea mays - Higher seedling vigor index 323
- Increased chlorophyll contents

12 Zinc oxide nanoparticles
(ZnONPs)

Micronutrient
(Zn)

Soybean (Glycine max) - Improvement in crop yield 85
- Better food quality

13 Zn and Cu nanoparticles (NPs) Micronutrient (Zn
and Cu)

Basil plant - Total chlorophyll and carotenoid in the
leaves increase

88

- Highest phenolic and avonoid content
- Better quantity and quality in basil

14 ZnO nanoparticles Micronutrient
(Zn)

Triticum aestivum - Enhances Zn uptake under drought stress 90 and
324- Grain nutrient accumulation

15 Magnetite (Fe2O3) NPs Micronutrient (Fe) Coriander plant - Growth regulator and antimicrobial agent 97
- Antimicrobial activity

16 Zeolite/Fe2O3 nanocomposites Micronutrient (Fe) — - Smart iron nanofertilizer 96
- Slow-release of iron ions

17 Manganese zinc ferrite NPs Micronutrient
(Mn, Zn)

Squash plant (Cucurbita pepo
L)

- Vegetative growth, 81
- Good mineral content
- The better yield of squash plant

18 Copper nanoparticles Micronutrient
(Cu)

Sandy loam soil - Slow-release of micronutrient fertilizer 98
- Better soil nitrication kinetics
- Control the bioavailability of Cu to soil
bacteria

29 Nano zeolite Nano-enhanced
fertilizers (NPK)

Sage plant - Better vegetative growth 102
- Increase in fresh and dry weight
- Better photosynthesis
- phenols, tannins, total avonoids, oil
constituents, macro, and micro-elements

20 Urea-loaded mesoporous
nanofertilizers

Nano-enhanced
fertilizers

Oryza sativa - Controllable release of nutrients 101
- High yield
- High nitrogen recovery efficiency (NRE)

218 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239 This journal is © The Royal Society of Chemistry 2021
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Table 1 (Contd. )

(B) Nanopesticides

S.
no. Nanomaterial/active ingredient Nature Host plant/crop Target Reference

21 Nanostructured alumina Nanoinsecticide Oryza sativa - Sitophilus oryzae 129 and
130- Oryzaephilus surinamensis

- Ceratitis capitate
- Leaf-cutting ants

22 Nanostructured alumina Nanoinsecticide — - Oryzaephilus surinamensis 133
- Stegobium paniceum (L.)
- Tribolium confusum

23 Nano silica Nanoinsecticide Zea mays - Sitophilus oryzae 134
- Rhizopertha dominica
- Tribolium castaneum
- Orizaephilus surinamenisis

24 ZnO and SiO2 NPs Nanoinsecticide Triticum aestivum - Sitophilus oryzae L 136
- Tribolium castaneum
Herbst
- Callosobruchus maculatus
F

25 ZnO NPs Nanoinsecticide — - White grubs (Holotrichia
sp.)

139 and
142

26 Chitosan NPs loaded with permethrin and
spinosad

Nanoinsecticide — - Drosophila melanogaster 325

27 AgNPs/silver-chitosan nanocomposite Nano bactericides Bacterial canker disease of
fruit trees

- Pseudomonas syringae 155

28 AgNPs Nano bactericides Bacterial blight disease of
pomegranate

- Xanthomonas axonopodis 326

29 TiO2/Cu2(OH)2CO3 NPs Nano bactericides/nano
fungicides

— - E. coli 157
- F. graminearum
macroconidia

30 CuNPs Nano fungicides Various crops - Fusarium solani 151
- Neofusicoccum sp.
- Fusarium oxysporum

31 Cobalt and nickel ferrite nanoparticles Nano fungicides Various crops - Fusarium oxysporum 152
- Colletotrichum
gloeosporioides
- Dematophora necatrix

32 CuNPs and AgNPs Nano fungicides Woody trees - Rhizoctonia solani 164
- Phytophthora cactorum
- Fistulina hepatica
- Grifola frondosa

33 Aluminum, silver, titanium oxide NPs Nano fungicides Oryza sativa - Ustilaginoidea virens 150
34 ZnO NPs and SiO2 NPs Viricide Nicotiana tabacum - Tobacco mosaic virus

(TMV)
169

35 Titanium NPs, magnetite NPs, MWCNTs, C60 Viricide Nicotiana benthamiana - Turnip mosaic virus 170
36 Nanoencapsulation of atrazine in

polycaprolactone
Nanoherbicides — - Brassica juncea plants 178

37 Polycaprolactone nanocapsules with atrazine Nanoherbicides — - Amaranthus viridis 179
- Bidens pilosa

38 Chitosan NPs loaded with imazapic and
imazapy

Nanoherbicides Allium cepa - Bidenspilosa 327

39 Nanoencapsulation of savory (Satureja
hortensis L.) essential oil

Nanoherbicides — - Tomato (Lycopersicon
esculentum Mill.)

181

- Amaranth (Amaranthus
retroexus L.)

40 Metsulfuron methyl-loaded pectin
(polysaccharide) nanoparticles

Nanoherbicides — - Chenopodium album plant 174

This journal is © The Royal Society of Chemistry 2021 Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 219
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Table 1 (Contd. )

(C) Nanosensors

S.
no. Nanomaterial used Analyte Detection method Application Reference

41 AuNPs Urea, nitrate, nitrite, ammonium,
and urease

Colorimetry - Detection of soil nutrients
and nitrogenous compounds

195 and
196

42 Graphene oxide (rGO) nanosensors Nitrate (NO3
�) Impedimetric - Detection of soil/water

nitrate
198

43 Polypyrrole/electrochemically reduced
graphene/glassy carbon

Nitrate (NO3
�) Potentiometric - Detection of soil nitrate 197

44 AgNPs Ammonium Colorimetry - Detection of NH4
+ in soil 199

45 Porphyrin-based nano metal–organic
framework (NMOF)

Phosphate Ratiometric
uorescence

- Detection of phosphate in
soil

204

46 GQDs Soil moisture Electrochemical - Detection and
quantication of soil moisture
and humidity

201

47 Quantum dots, carbon nanomaterials
(MWCNTs and graphene), polymers,
AuNPs

Atrazine, neonicotinoids,
carbamates, glyphosates, and
organophosphates

Optical/
electrochemical

- Detection of pesticide
residues

209, 210
and 328

48 AuNPs, AgNPs, QDs, CNTs, and
graphene

Toxic metal ions Fluorescence/
colorimetry/
electrochemical

- Detection of heavy metals
(Pb2+, Cd2+, etc.)

329
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KCl, called ‘MesoLite’, was applied at different concentrations
on wheat plant seedlings and was shown to increase the
potassium availability to plants.104 In another report, a natu-
rally-obtained zeolite (clinoptilolite) augmented with ammo-
nium nitrate was able to increase the crop yield from 96 kg ha�1

to 1.4 t ha�1 in corn crops.105 Silicon NPs have also been known
to improve seed germination rates, photosynthetic rates,
mesophyll conductance, chlorophyll content, better water
uptake, and biomass production.106,107 There are various studies
available on the positive impacts of silicon dioxide NPs on plant
growth and development.108,109 Another important NM, TiO2

NPs, promoted growth in different plants by improving the
chlorophyll content, straw yield (barley plants), and plant
growth.60,110,111 Carbon nanotubes (CNTs) are known to improve
the germination of crop plants, thereby covering the utility of
the emergent nano-biotechnology eld to crop science. There
have been numerous reports of improvement in plant growth by
carbon uptake, especially in the form of MWCNTs.112,113 To
describe the possible toxicological effects of the nanofertilizers,
more research should be conducted to explore the NM–plant
interaction. Moreover, the economic viability of nanofertilizer
needs to be investigated for sustainable agriculture. A list of
some important studies on plants to evaluate the potential of
nano-agrochemicals on plant growth are presented in Table 1.
3.2 Nanopesticides: protection against pests, pathogens,
and weeds

The use of pesticides is a common practice in agriculture for the
control of pests and weeds. Conventionally-used pesticides and
crop protection techniques show inefficiency towards environ-
mental safety and sustainable development.114–117 The world-
wide usage of pesticides on crops has shown a signicant
220 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239
increase of about 79% from 2 285 881 metric tonnes in 1990 to
4 113 591 tonnes in 2017.52 However, the excessive use of
pesticides in the agricultural sector faces numerous challenges
such as disease resistance, targeting of non-threatening and
even benecial species, nitrogen xation, destruction of soil
biodiversity, accumulation of pesticides in the environment,
and adverse effects on human health.32,118 Nanopesticides
include nanoinsecticides, nanoweedicides, nanofungicides,
and nanobactericides that are used for efficient delivery
systems, low cost, availability, and easier application.119,120

Nano-encapsulation is the nest method to improve the pesti-
cide value of the active ingredient ligated by protective cover-
ings.121–123 Nanocarriers, being biocompatible, safe to use, and
eco-friendly, help in enhancing the solubility of active
compounds and give better protection from volatilization and
degradation. They possess amazing properties such as
controlled and slow-release, enhance stability and permeability,
and prevention from premature degradation. Nanoscale engi-
neering has developed pesticide delivery systems that can
enormously decrease pesticide production costs and usage as
well. This will greatly help in pesticide development and use for
sustainable agricultural practices.124 Different formulations
such as polymeric NPs, solid lipid NPs, inorganic NPs (silica,
alumina, silver, copper, titanium dioxide), carbon materials
(MWCNTs, graphene, etc.), nanogels, and nanoemulsions have
been demonstrated as effective nanopesticides (Fig. 5) due to
their insecticidal, bactericidal, and fungicidal properties.33,125,126

Polymeric NPs, metallic NPs, and nanoalumina-silicates have
been used to boost plant growth by employing them as nano-
carriers for pesticides and herbicides.127 Currently,
nanoemulsions/nanodispersions (consisting of an oil phase,
surfactant, and water, being optically isotropic and kinetically
This journal is © The Royal Society of Chemistry 2021
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Fig. 5 Nanopesticides for effective pest management: Nanocarriers for pesticides include polymers, lipid, clay nanomaterials, metal–organic
frameworks, and greener formulations.320

Critical Review Environmental Science: Processes & Impacts

Pu
bl

is
he

d 
on

 2
2 

D
ec

em
be

r 
20

20
. D

ow
nl

oa
de

d 
by

 P
U

ST
A

K
A

 N
E

G
E

R
I 

SA
R

A
W

A
K

 o
n 

1/
28

/2
02

2 
10

:4
1:

57
 A

M
. 

View Article Online
stable colloidal solutions with 20–200 nm droplet size range)
have gained attention as potential carriers for targeted pesticide
delivery.128

One of the most important strategies for increasing the crop
productivity is the protection against insects. Nano-insecticides
(particularly nanosilicate–alumina and inorganic NPs) can pave
the way for the development of sustainable strategies for pest
management. For example, nanostructured alumina (NSA)
exhibited strong insecticidal properties against pests belonging
to families Coleoptera (Sitophilus oryzae, Oryzaephilus sur-
inamensis), Dipteran (Ceratitis capitate), and leaf-cutting
ants.129–132 NSA is known to possess non-toxicity, biocompati-
bility, lesser costs, and environment-friendly nature. Recently,
NSA was effectively investigated as a seed protectant against
seed-eating insects belonging to Coleoptera such as Oryzaephi-
lus surinamensis, Stegobium paniceum (L.), and Tribolium con-
fusum.133 In another study, nano-silica applied through soil
treatment was evaluated as an effective pesticide against storage
insects such as (Sitophilus oryzae, Rhizopertha dominica, Tribo-
lium castaneum, and Oryzaephilus surinamensis) in maize
plants.134 Several studies have also reported the insecticidal
potential of nano-silica against many insect families.135–137

Inorganic NPs such as titanium NPs, zinc oxide NPs, and AgNPs
have been extensively used as insecticidal agents for crop
protection.138–141 These inorganic NPs have shown activity
against white grubs, pulse beetles, and mosquito vectors. Most
importantly, AgNPs have been found to be more effective in
agricultural pest management.142–144

In addition to insecticidal properties, NMs with specic anti-
microbial activity against plant pathogens (phytopathogenic
fungi, bacteria, and viruses) can greatly help in preventing crop
losses. Some excellent reviews giving an overview of the appli-
cations of NMs in plant disease management have been pub-
lished.145–147 Several studies have established the antimicrobial
This journal is © The Royal Society of Chemistry 2021
activity of inorganic NPs against pathogenic bacteria and
fungi.148–150 For example, copper NPs were used as an efficient
fungicide against several phytopathogenic fungi such as Fusa-
rium solani, Neofusicoccum sp., and Fusarium oxysporum.151

Similarly, the activities of cobalt and nickel ferrite NPs were
tested against Fusarium oxysporum, Colletotrichum gloeospor-
ioides, and Dematophora necatrix.152 Silver NPs (AgNPs) have
always been known for their antibacterial characteristics and
can signicantly affect the bacterial growth in crop environ-
ments.153–156 Also, the antibacterial properties of titanium NPs
have been well investigated for crop protection against diseases
in several reports.157–160 The activity of inorganic nano-
formulations of copper and aluminum has also been elucidated
for both insecticidal and antibacterial activity in crop
plants.161–164 Along with bacterial and fungal infections, viruses
are known to cause large losses in crop production.165,166 The
inuence of NMs can be used for a novel anti-viral strategy
against viral infestations.35,167,168 For instance, ZnO NPs and SiO2

NPs were used as foliar sprays due to their activity against the
tobacco mosaic virus in tobacco plants both in vivo and in
vitro.169 Several studies have reported engineered NMs including
magnetite NPs, TiO2 NPs, C60, MWCNTs, and chitosan NMs for
infusing resistance against viral infections during plant
growth.170–173

Nano-weedicide and nano-herbicide development is speci-
cally aimed at targeting specic weeds/herbs that enter the crop
environment and cause nutrient exhaustion in the crops. Weed
management with encapsulated NMs (nanocarriers) can reduce
the phytotoxicity of herbicides in crops.119,147,174 Nanoactive
herbicides can decrease the requirement for synthetic herbi-
cides, thus increasing the harvest prots. The encapsulation of
herbicides (namely, atrazine, ametryn, simazine, and paraquat)
in polymers such as poly(epsilon-caprolactone), chitosan, and
alginate has shown high efficacy against the target weeds.175–177
Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 221
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Fig. 6 Electrochemical synthesis of graphene quantum dots from graphene oxide and its application in sensing of soil moisture.201
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Recently, a study reported the herbicidal potential of nano-
formulations and nanocapsules of atrazine when applied
through the foliar spray on Indian mustard plants.178,179 They
were found to be effective against slender amaranth (Amar-
anthus viridis L.) and hairy beggarticks (Bidens pilosa L.). The
controlled release of herbicides can be achieved by loading
them in the nanocomposites to prevent the degradation and
sorption of the active ingredients (AI) in soil.180,181 Various
support materials such as clays, polymeric microparticles, and
NPs have been recently investigated for the formulations of
herbicides.182–185 To conclude, nanopesticides play a signicant
role in the efficient and sustainable elimination of pests by
minimizing the use of synthetic chemicals and their hazardous
risks. For their wider applications, it is required to gain
knowledge of the mechanism of the action of nanopesticides at
the cellular level and their toxic effects on the target organisms.
For a safe and sustainable approach, it is of fundamental
importance to verify the risks associated with nanopesticides.
This will help in ensuring proper and signicant awareness and
usage of better and correct management practices among
farmers. Moreover, extensive research assessment of the risks
associated with their use must be carried out to check their
environmental fate.
3.3 Nanosensors: detection of pathogens and contaminants

Nanotechnology-based sensing approaches have gained
considerable momentum as they provide a wide range of
applications in agriculture and food-related sectors. Nano-
sensors can greatly help in improving the crop yields by the
management of agricultural water and soil, and detecting the
presence of chemical fertilizers and pesticides, soil nutrients,
moisture content, and contaminants such as excess fertilizers,
pesticide residues, plant pathogens (bacteria, fungi, and
viruses), and heavy metals.186–188 Nanosensors possess certain
benets over conventional sensors, namely, large surface to
volume ratio, real-time detection, compact size, high stability,
selectivity, and, sensitivity.189–191 Nanobiosensors are the next
generation detection devices that comprise of a biological
sensing element and a transducer that measures the
222 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239
physicochemical signal. This signal (optical, electrochemical, or
mechanical) is obtained with even ultra-low concentration of
the selected analyte or a parameter.29,192 Numerous types of NMs
including GO, CNTs, AuNPs, magnetic NPs, and quantum dots
(QDs) have been exploited for designing a variety of nano-
biosensors. NMs can be used to detect the soil nutrients such as
urea, nitrate, nitrite, ammonium, and urease, which can cause
toxicological implications in soils when present in excessive
amounts.193,194 Many studies are available in which nano-
biosensors have been utilized for the detection of these
nitrogenous nutrients in soil/water matrices employing
AuNPs.195,196 Similarly, soil nitrate has been detected using
electrochemically-reduced GO nanosensors based on the ion-
selective membrane of polypyrrole-doped with nitrate.197,198

AgNPs have also been investigated for their potential as color-
imetric sensors for the detection of ammonium in water
samples.199 There is a considerable amount of literature
demonstrating the detection and quantication of soil moisture
and humidity (Fig. 6).200–202 Also, NM-based sensors have been
used to quantify the total carbon content, organic matter,
phosphates, etc., for soil analysis.203–205 The excessive use of
pesticides such as atrazine, neonicotinoids, carbamates,
glyphosates, and organophosphates can have toxicological
implications on the environment and human health.206,207 The
detection of pesticide residues in soil and water using nano-
biosensors is a hot topic of research.208–210 The potential of NMs
such as QDs, carboneous NMs (MWCNTs and graphene), poly-
mers, AuNPs, and their derived composites in the nanosensors
for pesticide detection have been investigated in several
reports.211–213 For example, pesticides such as atrazine, methyl
parathion, acetamiprid, and glyphosate were detected in soil
samples using a different variety of NMs such as TiO2 nano-
lms, MWCNTs-chitosan nanocomposite, and AuNPs.214

Numerous studies have been proposed for the detection of
organophosphates and carbamates in vegetables and other food
samples.215–217 Recently, the detection of triazophos, parathion,
chlorpyrifos, carbofuran, carbendazim, and carbamates such as
carbofuran was achieved using QDs, AuNPs, and molecularly
imprinted polymers.218–221 Carbon NMs including graphene and
CNTs have also shown potential as sensing tools for
This journal is © The Royal Society of Chemistry 2021
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chlorpyrifos and atrazine, respectively.222,223 In addition to soil
and water samples, the pesticide residues can be efficiently
detected in food samples as well.224–226

Nanobiosensors have also been used for the determination
of microbial pathogens and toxins in agricultural systems and
food. These sensors play a signicant role in ‘smart’ agriculture
as they may detect infectious plant diseases even before the
appearance of symptoms.227–229 Metal oxide NPs, QDs, and
polymeric NPs have been studied for their role in plant disease
control by sensing microbial pathogens in the environment
near the plants. For instance, optical nanobiosensors have been
developed for the detection of waterborne and foodborne
pathogens.191,230,231 In addition, metal NPs such as AuNPs,
AgNPs, and magnetic NPs have been exploited for the optical
detection of bacteria such as E. coli, S. typhimurium, S. aureus, S.
enterica, and L. monocytogenes.191,232,233 There are certain reviews
on the electrochemical detection of pathogens and food toxins
in food products.234–238

The presence of toxic metal ions in the environment above
the critical limits proves harmful to crop growth. Various types
of NMs such as graphene, AuNPs, AgNPs, QDs, CNTs, and their
nanocomposites have been employed in uorescent, colori-
metric, surface-enhanced Raman scattering (SERS), and elec-
trochemical sensors for the recognition of a variety of toxic
heavy metals ions (e.g. Pb2+, Hg2+, and Cd3+) in soil and water
samples.239–241 Along with these analytes, nanobiosensors have
been successfully employed for the detection of hyaluronidase,
hydrogen peroxide, and environmental stress.242–244 These
optical nanosensors can identify the initial stress signals and
can thus be considered as a unique tool for precision agricul-
ture. Unnamed aerial vehicle (UAV)-based gateways nano-
sensors have been employed for various monitoring aspects for
the management of the soil state in agricultural activities and
the monitoring of environmental pollution.245 NMs coupled
with paper/microuidics has further helped in the development
of compact and portable biosensors for industrial applica-
tions.246–248 In short, nanosensor technology has made the way
for smart agriculture based on sustainable development, envi-
ronmental safety, management of fertilizers, reduction in input
costs, and enhancement in crop productivity, and prevention of
water overuse. Despite these unique advantages, most of the
nanosensors have been developed at the laboratory scale and
further efforts are required to design these sensing systems for
on-eld agricultural applications.
3.4 Nanoscale products: remediation of contaminated water
and soils

Nanotechnology has been providing potential solutions to
global challenges such as pollution caused in the agricultural
environment. Soil and groundwater have been at great risk due
to toxic organic and inorganic pollutants, and the improper use
of agricultural wastes. Nanotechnology provides cost-efficient
methods for the removal of heavy metals, dyes, biphenyls, pol-
yaromatic hydrocarbons, volatile organic compounds, and
other organic contaminants from wastewater released from the
elds.249–251 This section particularly focuses on the applications
This journal is © The Royal Society of Chemistry 2021
of NMs in biotic and abiotic strategies to eliminate contami-
nants from soil and water. Nano-remediation techniques
possess certain advantages such as the reduction in the clean-
up time procedures, elimination of the complex procedures
required for the treatment and disposal of contaminated soil,
decrease in the cleaning costs of the contaminated soils, and
reduction in the concentrations of certain contaminants to
near-zero low levels.43,252 The commonly employed NMs for
agricultural water are metal and metallic oxide NPs, carbon
nanotubes (CNTs), fullerenes, nanobers, magnetic NPs, nano
zero-valent-iron (nZVI) QDs, and polymeric NPs.253 The most
common mechanism of remediation of contaminated water
and soils is the removal of contaminants through adsorption,
photocatalysis, reduction, and chemical oxidation.159,254,255

Water polluted by agricultural chemicals can be puried using
nanoltration using CNT membranes, alumina bers, TiO2,
thin-lm nanocomposite membranes, and biomimetic
membranes. These NMs have been utilized for the removal of
bacteria and pathogenic parasites from the surface as well as
groundwater.256–258 In addition to water remediation, NMs have
been found to treat contaminated soils. The mobility and
toxicity of toxic soil pollutants can be affected by their adsorp-
tion onto organic ligands, minerals, and NMs surface through
ion exchange/coordination interactions.259,260 The reuse and
recyclability of the adsorbent NMs play an important role in
cutting down the remediation costs. In this context, magnetic
iron oxide NPs offer good advantages such as super-
paramagnetism, environment friendliness, quick separation
aer adsorption, and ease of synthesis.31,261 For example,
a recent study reported a decrease in soil erosion and arsenate
leaching using magnetic NPs.262 Another important material,
nanoscale zerovalent iron particles (n-ZVI), has gained a lot of
attention for the removal of pollutants such as heavy metals,
drug residues, and pesticides from agricultural soil remedia-
tion.263–265 NMs can also be used for the catalytic degradation
and mineralization of organic pollutants, and antibiotics in
contaminated soils via the oxidation process.266–268 Apart from
these advancements, NMs have achieved a breakthrough by the
effective biodegradation of organic pollutants such as triclosan,
lindane, polychlorinated biphenyls (PCBs), DDE, and poly-
brominated diphenyl ethers (PBDEs) in soil and water.269–271

Another important application of NMs in promoting envi-
ronmental sustainability is the effective management of agri-
cultural wastes.272 It should be the top priority of researchers to
develop novel technologies that can attain full sustainability in
agriculture. The advancement of nanotechnology has helped in
the exploitation of agricultural wastes and residues to prevent
their dumping into the environment.273,274 Different types of
crop residues such as wheat straw, rice crop residues, grasses,
soy hulls, potato pulp, tea wastes, and cotton wastes have been
considered as the best raw materials for the production of
nanocellulose.275,276 Nanocellulosic materials can be extracted
from these plant resources as bers or nanocrystals. These
materials exhibit several properties such as high strength, high
surface area, bio-degradability, low toxicity, and a wide range of
applications in food science and environmental remedia-
tion.277,278 Apart from nanocellulose, several useful products
Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 223

https://doi.org/10.1039/d0em00404a


Environmental Science: Processes & Impacts Critical Review

Pu
bl

is
he

d 
on

 2
2 

D
ec

em
be

r 
20

20
. D

ow
nl

oa
de

d 
by

 P
U

ST
A

K
A

 N
E

G
E

R
I 

SA
R

A
W

A
K

 o
n 

1/
28

/2
02

2 
10

:4
1:

57
 A

M
. 

View Article Online
such as super-adsorbent hydrogels,279,280 bio-nano-
composites,274 bioethanol,281 silica,282 detergents,283 and bio-
fuels284–286 have been reported. Moreover, nanotechnology
engineering has been used to develop agro-machinery, tracking
of agricultural products, and barcode technology via nano-
devices, storage, and distribution of agricultural produce.287

Despite enough information about the benecial applications
of NMs in environmental remediation, there is still a lack of
knowledge about their large-scale and real-world application in
contaminated soils and water. A proper evaluation system for
the employment of NMs in the agricultural sector must be
established to provide practical information so as to prevent
damaging exposure.288,289
4. Nanomaterial safety and
regulations

The advancements of nanotechnology in agriculture has led to
the entry of NMs into the environment and soil systems. Upon
entering the soil, NMs may undergo physical/chemical/
biological transformations depending upon their nature and
the presence of organic/inorganic constituents of the soil. The
transformation or aggregation of the NMs may alter their
stability, reactivity, toxicity, and selectivity against their target.
Detailed investigations are required to access the fate of NMs in
the soil.290,291 NMs may enter human food chains through the
consumption of plant-derived products obtained via delivery
systems or processed foods. The main risk arises due to the
extremely small particle size and large surface area of the NMs,
which is comparable to our biomolecules (e.g. DNA, RNA, and
proteins). They may cross cellular barriers, showing toxicity to
humans and livestock as well.292,293 Improper handling of nano-
agrochemicals by untrained workers further poses a risk of their
solubility and dispersion in water and soil. Moreover, industrial
exposure will also increase with the growing manufacturing and
usage of NMs in society (Fig. 7). These worries have created
apprehensions about the harmful effects of the engineered NMs
on human health and environment.294,295 A complete knowledge
of NMs as products in agriculture and food processing, NP–
plant interactions, bio-distribution, entrance in food chains,
and toxicological implications must be carefully obtained
before their application in agriculture. Different factors before
NP exposure must be understood, which may raise concerns
about their toxicity.296,297

Although NM-enabled technologies have provided many
opportunities to fuel the growth of sustainable agriculture,
certain challenges prevent their overall development and
commercialization in agriculture. The most important techno-
logical barriers in realizing the full potential of NMs include the
lack of information regarding the plant–NM interactions and
nanomaterial uptake, limited routes of delivery of NMs into
plant architecture, incomplete understanding of the NMs' fate
in the environment, and human health risks arising from NMs
entering the food chain.31 Currently, the underlying mecha-
nisms of nano-enabled solutions are mainly focused on the
phenomenological and theoretical observations, which need to
224 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239
be explored more. In the context of nano-agrochemicals for
enhancing plant function, the biophysics relating to the inter-
action of NMs with the leaf cuticle and chloroplast cells must be
elucidated. The properties of NMs including size, dose, expo-
sure time, surface chemistry, structures, immune response,
accumulation, retention time, and other effects should be
accessed carefully. There is a need for more in situ investiga-
tions for the determination of the range of mechanisms
responsible for providing the benecial effects. Such informa-
tion will help to customize smarter designs for NMs to improve
photosynthesis and to manage plant stress.298,299 Also, the
delivery of the NMs at the right target place and the calculation
of appropriate dose in plants is a big challenge. Tuning charge
and size, or coating NMs with guiding biomolecules, may
increase the uptake efficiency and enable the targeting of
specic plant cell compartments and organelles. NMs should be
applied to plants when the environmental conditions (such as
temperature, pH, salinity, water content, and moisture) are
favorable to overcome any climatic stress. NM exposure should
be critically measured in assessing and managing the risks in
the nano-agricultural eld. Concerns regarding human health,
safety, and ecological implications have not been addressed
properly to date. The combination of disciplines including
plant biology, nanochemistry, and plant pathology is necessary
to realize the full potential of nanotechnology in agriculture.299

In addition to all these scientic challenges, the successful
deployment of this technology within the prot margins of crop
agriculture mainly depends on their ability to balance system
costs and benets. The commercial use of NMs requires thor-
ough investigations into screening and their optimization for
different plant species. The performance and fate of NMs can be
altered by tuning the properties and stability of NMs. Further
developments in innovative and improved synthetic methods
will result in better product composition with improved effi-
ciency. More knowledge at the eld level will be highly useful for
the large-scale industrial implementation of nano-based solu-
tions. There should be more collaborative research among
different stakeholders exploring efficient, multifunctional,
stable, cost-effective, and environment-friendly NMs. Another
important aspect of commercialized nano-agro products is the
public perception regarding the safety concerns during the
application of these products in agricultural practices. Excessive
inputs of NMs into the agriculture system will raise questions
on the ultimate fate and translocation of these materials into
the environment.29 To ensure the positive implications of
nanotechnology in agro products, a comprehensive and
responsive strategy must be developed along with coordinated
risk management. In this context, the toxicological assessment
of NMs is viewed as the basic step towards the identication of
hazards related to applications of NMs in the agro-food sector.

With the development of numerous nano-products in the
commercial market (Table 2), there are efforts worldwide to
address and regulate the production and use of NMs either by
legislation or by recommendations and guidance. Various
governments and scientic organizations have realized the
signicance of NM-risk management in the agri-food sector.
The regulation of engineered NMs is well dened from the
This journal is © The Royal Society of Chemistry 2021
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Fig. 7 Life-cycle of nano-agrochemicals used in agriculture. The increased use of nanomaterials in the agriculture sector has caused a risk to
human health and the environment.29
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perspective of Environment, Health, and Safety (EHS).300,301

Different government, industry, and standards organizations
have proposed different denitions for NMs. A legal denition
of NMs is essential to implement specic risk assessment and
risk management measures for them. Regulatory agencies such
as USEPA, USFDA, European Commission (Recommendation
on the Denition of NMs), and others have given advisory
denitions of NMs.302 Also, Health Canada published a ‘Policy
statement on Canada working denition of nanomaterials’ for the
regulatory framework of NMs.303 NMs are either indirectly or
directly declared unsafe by various sections of legislation for
safety assessment. In the UK, the Royal Academy of Engineering
in its 2004 report ‘Nanoscience and Nanotechnologies: Opportu-
nities and Uncertainties’ treated NMs as the new materials under
their new substances regulation and recommended fresh
registration, evaluation, authorization, and testing of NPs.304

The ‘Joint Statement on Nanomaterials Toxicology’ issued by the
Committee on Toxicity, Carcinogenicity, and Mutagenicity of
Chemicals in food, consumer products, and environment, has
identied the risk assessment and management related to NMs
used in the UK.305 In the European Union (EU), the important
This journal is © The Royal Society of Chemistry 2021
legislation regulating the use of NMs in the food industry is
Registration, Evaluation, Authorization, and Restriction of
Chemicals (REACH) regulation (1907/2006).306 The main aim of
the REACH regulations is to protect human health and the
environment from chemical substances including NMs. The
substances used as plant protection products, biocides and
NMs (including SAS, TiO2, and nano-silver), is registered under
REACH provisions. Also, according to Regulation on Classi-
cation, Labelling, and Packaging (CLP), products containing
hazardous substances or NMs have to be labeled depending on
the concentration limit. Also, European Biocidal Products
Regulation (EU 528/2013) contains provisions for specic
testing and risk assessment for the NM form of a biocidal
substance.307 In addition to REACH and CLP legislation, EU
legislation asks for a market authorization of NM applications
in foods based on the safety assessment by the European Food
Safety Authority (EFSA) to take care of the potential health
risks.308 EFSA has become one of the most important part of EU
food-related legislation that ensures food safety and protects
consumers from food-related risks. In Switzerland, nano-prod-
ucts' safety is regulated by the Swiss Ordinance of 2010 under
Environ. Sci.: Processes Impacts, 2021, 23, 213–239 | 225
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Table 2 Commercialized nanoscale products available in the market

S. no. Type of nanomaterial Type of polymer Trade/commercial name Modied functions

1 Nanoclay Nylon 6 Aegis® OXCE Barrier Nylon
Resin, a product from the
USA, Honeywell
International Inc.

The better barrier as
compared to the glass
bottle's performance. Well-
suited to the co-injection
process because its
processing temperature is
similar to that of PET

2 Nanoclay Nylon 6 Imperm® Nylon
nanocomposite, a product
from the USA, Mitsubishi
Gas Chemical Company, Inc.

Replacement of EVOH with
a better cost-effective
material. Easy processing
and maintaining the barrier
features. Elimination of the
requirement of tie-layers

3 Nanoclay Starch Plantic® Plastic Tray,
a product from Australia,
Plantic Technologies
Limited

Developed from renewable
and sustainable resources.
Non-toxic to the
environment. Biodegradable
aer use. Better mechanical
& rheological properties.
Less sensitivity to moisture

4 Nanosilver (25 nm) Polypropylene (PP) FresherLonger™ Plastic
Storage Bags,
FresherLonger™ Miracle
Food Storage, a product
from USA, Sharper Image®
Company

Fresh foods by a factor of 3
or 4 for fruits, vegetables,
herbs, breads, cheeses,
soups, sauces, and meats.
98% reduction of bacterial
growth aer 24 hours

5 Nanosilver Polypropylene (PP) silver Sina Antibacterial Food
Storages, product from
Vietnam, Dai Dong Tien
Corporation

Dirt and fungal protection.
Bad smell removal. Germ
prevention. Fresh food for
a longer time

6 Nanosilver Copolyester (Tritan™) e.Window® Nano Silver
Airtight Container, product
from South Korea

No odor. Better sterilization
of food containers. Less bad
smell. USFDA approved

7 Nanosilver — Everin Food Containers
Nano Silver Airtight, product
from South Korea NewLife
Co., Ltd.

Antibacterial activity. Fresh
food for long times

8 Nanosilver (20–70 nm) Polyethylene Fresh Box Nano Silver Food
Container, product from
South Korea, FinePolymer,
Inc.

Antimicrobial food
container. Antifungal. Fresh
food for longer times

9 Nanosilver Polypropylene (PP) Anson Nano Freshness-
Keeping Film, Anson Nano
Freshness-Keeping Storage
Bag, Anson Nano Silver
Fresh Containers, product
from China, Anson Nano-
Biotechnology (Zhuhai) Co.,
Ltd.

Fresh food for longer times.
Safe food storage. American
FDA standard

Polyethylene (PE)

10 Nanosilver Silicon Double handle nanosilver
baby bottle, product from
China, Shenzhen Ibecare
Commodity Limited
Company

Antibacterial. Bisphenol A
(BPA) free
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the Federal Office of Public Health (FOPH). In the USA, the
USEPA (the United States Environmental Protection Agency) has
emphasized the responsible role of nanotechnology in society
and the consequences of NPs exposure on humans.309 USFDA
(United States Food and Drug Administration) is chiey
responsible for the safety of food and feed additives, food
226 | Environ. Sci.: Processes Impacts, 2021, 23, 213–239
coloring agents, and other food products present in the market
under Federal Food, Drug, and Cosmetic Act (FFDCA).310,311

FFDCA does not contain any specic regulations for nano-based
products in the food sector. USA and Canadian agencies are
working together towards the regulation of NMs under the US-
Canada Regulatory Cooperation Council (RCC) Nanotechnology
This journal is © The Royal Society of Chemistry 2021
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Initiative. In India, food safety is ensured by the Food Safety and
Standards Act, 2006, wherein the risks associated with nano-
technology are assessed but there is no strategy to manage the
risks.312,313 In China, food safety is regulated under the Food
Safety Law. However, it does not contain any specications
regarding the usage of NMs. The NCNST (National Centre for
Nanoscience and Technology) is responsible for developing
standards in the nanotechnology area in China.314 Many coun-
tries (US, Australia, New Zealand) have accepted a wide
approach dealing with the regulation and use of NPs in the agro-
food sector including non-mandatory provisions and current
frameworks to deal with NMs. Appropriate risk assessment
methods and standards can be coordinated with risk manage-
ment strategies to formulate the policies. FAO and WHO have
formed CAC (Codex Alimentarius Commission) that creates
international food standards and guidelines for food products
and their safety.315,316 U.S. Federal Insecticide, Fungicide, and
Rodenticide Act (FIFRA) Scientic Advisory Panel, consulted by
USEPA, regulates the current procedures for hazard evaluation
and exposure-related with nanopesticides.317 Proper safety and
adequate regulatory frameworks should be adopted towards the
products of nanotechnology. The applications of NMs in the
agro-food sector should be carefully administered while
following existing regulations and policies. Multilateral collab-
orations between countries can ensure high levels of safety
against NMs exposure. For instance, Organization for Economic
Co-operation and Development (OECD) assists different coun-
tries in the implementation of national policies that guarantee
the responsible development of nanotechnology and address
the safety of NMs under the project “Working Party on Manu-
factured Nanomaterials (WPMN)”.318,319 The OECD Environ-
ment Directorate has published the “Series on the Safety of
Manufactured Nanomaterials” under OECD Environment,
Health, and Safety Publications in the Joint meeting of the
Chemicals Committee and the Working Party on Chemicals,
Pesticides, and Biotechnology. In this project, various national
voluntary reporting schemes and regulatory programmes have
been analyzed to assess the safety of manufactured NMs and to
develop risk assessment approaches. Overall, planned research
and policy formulation must be framed by inter-governmental
organizations aer the collection of relevant scientic
information.

5. Conclusion and future outlook

Sustainable agriculture has become essential for promoting
food safety and protection of the environment. Agriculture
needs modernization and innovation to meet the increasing
demands of food for the growing global population and to
maintain environment sustainability simultaneously. As a basic
principle of sustainable agriculture, minimum agrochemicals
should be used with low production costs but higher outputs.
The production and application of nano-agrochemicals in the
agricultural sector have developed condence among
researchers and scientists regarding the reliability of nano-
technology in agriculture. Nanosized delivery systems and sus-
tained release are the smartest tools for modern agriculture.
This journal is © The Royal Society of Chemistry 2021
Nanotechnology can contribute to the agro-food sector with
novel tools such as the delivery of nanofertilizers and micro-
nutrients, agrochemical encapsulated nanocarrier systems, and
nanopesticide delivery including green pesticides and bio-
pesticides. Management of agricultural wastes, water and soil
remediation, agro-products processing and storage, detection
of plant diseases, and monitoring plant growth with nano-
sensors have tremendously beneted agricultural workers.
However, these nanoproducts must be carefully assessed before
implementation. The research outcomes of this eld are mostly
restricted to the laboratories and the related rules and regula-
tions are also not well documented. Farmers and industrial
personnel are quite unwilling to invest in this eld due to high-
product investments and poor cost benets. These technologies
may not be commercially very protable and are unable to cope
up with the ongoing demands of food production and distri-
bution. Examples of available commercial products in the
market are few and need urgent attention. The effects of NMs on
human health, safety, and ecological implications are also not
well understood. There should be a clear analysis of the physical
and chemical characteristics of the soil of the elds for the
application of NPs to reduce the associated risks concerning the
plant. Human and eco-toxicological research can pave the way
for understanding the complex relationship between agro-
environment, nanoscale agrochemicals, exposure levels, and
human beings. A detailed investigation is needed for assessing
the mechanistic application of NMs and their agro-ecological
toxicity.
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